• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    Structural and functional analysis of the Vaccinia virus O1 virulence protein

    Thumbnail
    View/ Open
    WEEKS-MASTERSTHESIS-2017.pdf (3.913Mb)

    Show full item record
    Author
    Weeks, Anastasia C.
    Abstract
    Poxviruses are double-stranded DNA viruses capable of causing disfiguring and deadly disease in a wide range of hosts, from insects to mammals. Orthopoxviruses (OPXV) encode many proteins that are not essential for viral replication, but are responsible for vast differences in pathogenesis. Of the>200 proteins in the prototypical OPXV vaccinia virus (VACV), many remain functionally cryptic. The objective of these studies was to understand how the VACV O1 protein functions by investigating cell-specific effects that may contribute to virulence. The O1L gene is expressed early as the O1 protein, a 78 kDa protein that lacked N-linked glycosylation. These data are the first to demonstrate the reduced ability of an O1 deletion mutant ([delta]O1) to induce cell migration compared to the parental VACV Western Reserve strain (VACV-WR). [delta]O1-infected cell monolayers also exhibited reduced plaque diameter and clearance in plaque foci. These observations indicated that O1 is a significant contributor to VACV cytopathic effects (CPE) in vitro, in agreement with published reports. The results reported herein are the first to describe an altered immunological response with [delta]O1, as levels of anti-VACV immunoglobulin significantly increased with [delta]O1 infection at a time point (seven days post-infection) when VACV-WR induced VACV-specific antibody levels were comparable to sera from mock-infected mice. [delta]O1 was more immunogenic in an ex vivo antigen presentation assay, although mitogen-induced CD4+ T cell activation during [delta]O1 infection was equivalent to VACV-WR infection. Surprisingly, of all the immune cell types tested, [delta]O1 significantly differed from VACV-WR infection in the metabolic readout of only one cell type - RAW 264.7 macrophages. VACV-WR infected RAW 264.7 macrophages were more metabolically active than [delta]O1-infected cells at higher infectious doses, which may be indicative of a specialized niche for O1 function. Taken together, these data may provide clues into the mechanism of O1 virulence.
    URI
    http://hdl.handle.net/10342/6393
    Subject
     poxvirus; O1L; mutant; immune; attenuated; plaque; morphology; cell; migration 
    Date
    2017-07-26
    Citation:
    APA:
    Weeks, Anastasia C.. (July 2017). Structural and functional analysis of the Vaccinia virus O1 virulence protein (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/6393.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Weeks, Anastasia C.. Structural and functional analysis of the Vaccinia virus O1 virulence protein. Master's Thesis. East Carolina University, July 2017. The Scholarship. http://hdl.handle.net/10342/6393. August 10, 2022.
    Chicago:
    Weeks, Anastasia C., “Structural and functional analysis of the Vaccinia virus O1 virulence protein” (Master's Thesis., East Carolina University, July 2017).
    AMA:
    Weeks, Anastasia C.. Structural and functional analysis of the Vaccinia virus O1 virulence protein [Master's Thesis]. Greenville, NC: East Carolina University; July 2017.
    Collections
    • Biomedical Sciences
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback