• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    Pulmonary Artery Hemodynamics Using MRI & CFD

    Thumbnail
    View/ Open
    RABIDOU-MASTERSTHESIS-2017.pdf (2.822Mb)

    Show full item record
    Author
    Rabidou, Jake
    Abstract
    Pulmonary hypertension (PH), as defined by a mean pulmonary arterial pressure (mPAP) greater than 25 mmHg, is a life-threatening chronic disorder of the pulmonary circulation which leads to right ventricle failure and if untreated, death. The purpose of this work was to use both, magnetic resonance imaging (MRI) and computational fluid dynamics (CFD), to quantify changes in wall shear stress (WSS) throughout the pulmonary artery (PA) of a pulmonary hypertension (PH) population when compared to a normotensive control subject. With the future goal of this knowledge potentially being used to diagnose PH non-invasively. Patient's PA's were recreated using MRIs and MIMICS software. Velocity profiles were generated from the MRIs using MATLAB and CFD simulations were conducted using Fluent 17.0. Overall, the data followed a similar trend to published data where the control subject showed an approximately 1.5 to 3.5 times increase in WSS when compared to the PH subjects. The control subject showed a maximum of 5.596 dyn/cm2 while the PH subjects ranged from 1.521 to 3.151 dyn/cm2. This work can serve as the groundwork for further CFD simulations however, future work needs to be done with both a larger population size, potentially modeling further into the pulmonary vasculature as well as attempting different methods of data post-processing.
    URI
    http://hdl.handle.net/10342/6399
    Subject
     FLUENT; ANSYS; Wall Shear Stress (WSS); mPAP; MRI; Right Heart Catheterization (RHC) 
    Date
    2017-07-19
    Citation:
    APA:
    Rabidou, Jake. (July 2017). Pulmonary Artery Hemodynamics Using MRI & CFD (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/6399.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Rabidou, Jake. Pulmonary Artery Hemodynamics Using MRI & CFD. Master's Thesis. East Carolina University, July 2017. The Scholarship. http://hdl.handle.net/10342/6399. July 07, 2022.
    Chicago:
    Rabidou, Jake, “Pulmonary Artery Hemodynamics Using MRI & CFD” (Master's Thesis., East Carolina University, July 2017).
    AMA:
    Rabidou, Jake. Pulmonary Artery Hemodynamics Using MRI & CFD [Master's Thesis]. Greenville, NC: East Carolina University; July 2017.
    Collections
    • Engineering
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback