• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    Methods for Handling Missing Data for Multiple-Item Questionnaires

    Thumbnail
    View/ Open
    SIVER-MASTERSTHESIS-2017.pdf (974.8Kb)

    Show full item record
    Author
    Siver, Sydney R
    Abstract
    Missing data is a common problem, especially in the social and behavioral sciences. Modern missing data methods are underutilized in the industrial/organizational psychology and human resource management literature. Recommendations for handling missing data and default options in software packages often use outdated, suboptimal methods for missing data. Resulting analyses tend to be biased, underpowered, or both. Best practice recommends for the handling of missing data includes the use of multiple imputation (MI) methods. However, this method is often ignored in favor of more convenient methods. For industrial/organizational psychologists, missing data is particularly problematic on multiple-item questionnaires, such as the Survey of Perceived Organizational Support (SPOS). Person mean imputation is one of the most common methods used to handle missing data on multiple-item questionnaires. However, it makes strong assumptions about the missing data mechanism and the underlying factor structure of a measure and should be avoided, particularly if there is a high rate of non-response. MI does not make the same assumptions as person mean imputation and may be a superior method when items are missing from a multiple-item questionnaire. Results indicate that PMI and MI provide similar results, however PMI may outperform MI when the number of variables is large.
    URI
    http://hdl.handle.net/10342/6517
    Subject
     person mean imputation; Monte Carlo 
    Date
    2017-09-27
    Citation:
    APA:
    Siver, Sydney R. (September 2017). Methods for Handling Missing Data for Multiple-Item Questionnaires (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/6517.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Siver, Sydney R. Methods for Handling Missing Data for Multiple-Item Questionnaires. Master's Thesis. East Carolina University, September 2017. The Scholarship. http://hdl.handle.net/10342/6517. August 08, 2022.
    Chicago:
    Siver, Sydney R, “Methods for Handling Missing Data for Multiple-Item Questionnaires” (Master's Thesis., East Carolina University, September 2017).
    AMA:
    Siver, Sydney R. Methods for Handling Missing Data for Multiple-Item Questionnaires [Master's Thesis]. Greenville, NC: East Carolina University; September 2017.
    Collections
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback