• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    A Scalable Solution for Extreme Multi-class Product Classification: An E-commerce Case Study

    View/ Open
    FATHI-MASTERSTHESIS-2018.pdf (5.901Mb)

    Show full item record
    Author
    Fathi, Ehsan
    Abstract
    Image classification is the main task in image processing. Although, there were a lot of advances in recent years, it is still quite a challenge. On the other hand, due to the progress in technology, e-commerce has emerged as the fastest-growing sector of the U.S. marketplace. Product classification is an extremely important issue in e-commerce. In this work, we propose a scalable, flexible, practical, modular and efficient architecture to use image classification techniques for product classification just using product images. Considering the diversity of products offering in retail online retail stores it is not surprising that we confront an excessive number of classes. Case study is Cdiscount which is the biggest non-food e-commerce company in France which has made about 3 billion euros. As the trend of growing rate of this e-commerce shows they will have about 30 million products up for sale while they just had 10 million products until 2 years ago. As the next step to toward business expansion, they decided to employ image processing techniques. The structure of the dataset, diversity of the products and volume of it makes it unique between all the available public data sets. We focused on developing a CNN architecture to tackle this challenge and provide a more general, flexible, scalable and efficient solution for Cdiscount image classification business problem. Results of applying the proposed architecture shows a reasonable accuracy which shows the efficiency of the architecture. A comparison between proposed model and previous models is also provided.
    URI
    http://hdl.handle.net/10342/6769
    Subject
     product classification; Constitutional Neural Network 
    Date
    2018-04-27
    Citation:
    APA:
    Fathi, Ehsan. (April 2018). A Scalable Solution for Extreme Multi-class Product Classification: An E-commerce Case Study (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/6769.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Fathi, Ehsan. A Scalable Solution for Extreme Multi-class Product Classification: An E-commerce Case Study. Master's Thesis. East Carolina University, April 2018. The Scholarship. http://hdl.handle.net/10342/6769. August 17, 2022.
    Chicago:
    Fathi, Ehsan, “A Scalable Solution for Extreme Multi-class Product Classification: An E-commerce Case Study” (Master's Thesis., East Carolina University, April 2018).
    AMA:
    Fathi, Ehsan. A Scalable Solution for Extreme Multi-class Product Classification: An E-commerce Case Study [Master's Thesis]. Greenville, NC: East Carolina University; April 2018.
    Collections
    • Computer Science
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback