• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    SOCIAL REGULATION OF THE ENDOCANNABINOID SYSTEM IN ZEBRAFISH MOTOR CIRCUITS

    Thumbnail
    View/ Open
    ORR-MASTERSTHESIS-2018.pdf (1.426Mb)

    Show full item record
    Author
    Orr, Stephen A
    Abstract
    Social status-dependent modulation of neural circuits has been investigated extensively in vertebrate and invertebrate systems. However, the effect of social status on shifting the balance in activation between competing neural circuits is poorly understood. Zebrafish (Danio rerio) form stable social relationships that consist of socially dominant and subordinate animals. Once the social hierarchy is formed, social status-dependent differences in behavior patterns emerge. Subordinate animals startle more readily in response to auditory stimuli, while dominants swim at a higher frequency than subordinates. Here, we investigated the role of the endocannabinoid system (ECS) in regulating the activation of the swim and escape circuits based on social status. Our aim was to investigate how the ECS facilitates the transition between swim and escape circuits in socially dominant and subordinate animals. Endocannabinoids act as retrograde signaling molecules between neurons and are implicated in inhibition of both excitatory and inhibitory neurotransmission via retrograde binding of the cannabinoid 1 (CB1) or cannabinoid 2 (CB2) receptor. A previous study revealed a novel role for the endocannabinoid 2-Arachidonoylglycerol (2-AG) in modulating the switch in activation between the swim and startle circuits in zebrafish. The ECS can be up- or down-regulated by altering levels of 2-AG or targeting CB1 receptor function. To better understand how social status regulates the ECS and its effects on circuit activation, we studied the effects of two drugs, AM-251 and JZL184, on the regulation of status-dependent differences in swim and escape behavior. AM-251 competitively blocks endocannabinoid signaling by binding to CB1 receptor, while JZL184 increases 2-AG concentration by inhibiting monoacylglycerol lipase (MAGL), the degradative enzyme for 2-AG. First, we show that increasing ECS activity via intramuscular injection of JZL184 differentially affects swim and escape behavior according to social status. Secondly, we show that block of CB1 function with AM-251 reduces startle sensitivity and swimming frequency, and that its effects are concentration dependent. Thirdly, we utilize a dopamine receptor 1 knockout fish (D1KO) to demonstrate that the effects of ECS modulation on startle involves the dopamine D1 receptor system. Collectively, these findings support the notion that the ECS, as reflected by changes in swimming and escape behavior in response to treatment with JZL184 and AM-251, is socially regulated and involved in the social status-dependent shift in the balance of motor circuit activation, and that these effects are mediated in part via dopaminergic pathways. Our results represent an important step forward in the field of social neuroscience and better define the path toward a comprehensive understanding of the molecular factors that control social behavior.
    URI
    http://hdl.handle.net/10342/6942
    Subject
     endocannabinoid; 2-AG; motor circuits 
    Date
    2018-07-20
    Citation:
    APA:
    Orr, Stephen A. (July 2018). SOCIAL REGULATION OF THE ENDOCANNABINOID SYSTEM IN ZEBRAFISH MOTOR CIRCUITS (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/6942.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Orr, Stephen A. SOCIAL REGULATION OF THE ENDOCANNABINOID SYSTEM IN ZEBRAFISH MOTOR CIRCUITS. Master's Thesis. East Carolina University, July 2018. The Scholarship. http://hdl.handle.net/10342/6942. March 06, 2021.
    Chicago:
    Orr, Stephen A, “SOCIAL REGULATION OF THE ENDOCANNABINOID SYSTEM IN ZEBRAFISH MOTOR CIRCUITS” (Master's Thesis., East Carolina University, July 2018).
    AMA:
    Orr, Stephen A. SOCIAL REGULATION OF THE ENDOCANNABINOID SYSTEM IN ZEBRAFISH MOTOR CIRCUITS [Master's Thesis]. Greenville, NC: East Carolina University; July 2018.
    Collections
    • Biology
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback