• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   ScholarShip Home
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    THE MECHANISTIC TARGET OF RAPAMYCIN (mTOR) AND ITS COMPLEX 1 ASSOCIATED PROTEIN RPTOR ARE GERM CELL-AUTONOMOUSLY REQUIRED FOR SPERMATOGONIAL DEVELOPMENT & CHAPTER IV: INVESTIGATING CHANGES IN THE TESTICULAR TRANSCRIPTOME DURING THE PROSPERMATOGONIAL TRANSITION

    Thumbnail
    View/ Open
    SERRA-DOCTORALDISSERTATION-2019.pdf (16.94Mb)

    Show full item record
    Author
    Serra, Nicholas
    Abstract
    Stem, progenitor, and differentiating spermatogonia are formed in the neonatal mouse testis, and they provide the foundation for spermatogenesis and life-long fertility. Currently, the factors that regulate these varying spermatogonial fates, in particular the molecular mediators that regulate spermatogonial differentiation, are poorly understood. Our lab previously reported that retinoic acid (RA) activates kinase signaling pathways to stimulate synthesis of proteins required for spermatogonial differentiation. The work presented here extends those findings, and is organized into chapters. In chapters 1-2, I present published studies describing key roles for 'mechanistic target of rapamycin kinase' (MTOR) and 'regulatory associated protein of MTOR, complex 1' (RPTOR) in normal spermatogonial development in vivo. In chapter 3, I present the results from an unbiased RNA-seq analysis of testicular gene expression in the fetal and neonatal mouse testis prior to establishment of the spermatogonial pool.
    URI
    http://hdl.handle.net/10342/7441
    Subject
     Spermatogenesis; Reproduction; Development; Prospermatogonia; Differentiation 
    Date
    2019-07-26
    Citation:
    APA:
    Serra, Nicholas. (July 2019). THE MECHANISTIC TARGET OF RAPAMYCIN (mTOR) AND ITS COMPLEX 1 ASSOCIATED PROTEIN RPTOR ARE GERM CELL-AUTONOMOUSLY REQUIRED FOR SPERMATOGONIAL DEVELOPMENT & CHAPTER IV: INVESTIGATING CHANGES IN THE TESTICULAR TRANSCRIPTOME DURING THE PROSPERMATOGONIAL TRANSITION (Doctoral Dissertation, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/7441.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Serra, Nicholas. THE MECHANISTIC TARGET OF RAPAMYCIN (mTOR) AND ITS COMPLEX 1 ASSOCIATED PROTEIN RPTOR ARE GERM CELL-AUTONOMOUSLY REQUIRED FOR SPERMATOGONIAL DEVELOPMENT & CHAPTER IV: INVESTIGATING CHANGES IN THE TESTICULAR TRANSCRIPTOME DURING THE PROSPERMATOGONIAL TRANSITION. Doctoral Dissertation. East Carolina University, July 2019. The Scholarship. http://hdl.handle.net/10342/7441. September 27, 2023.
    Chicago:
    Serra, Nicholas, “THE MECHANISTIC TARGET OF RAPAMYCIN (mTOR) AND ITS COMPLEX 1 ASSOCIATED PROTEIN RPTOR ARE GERM CELL-AUTONOMOUSLY REQUIRED FOR SPERMATOGONIAL DEVELOPMENT & CHAPTER IV: INVESTIGATING CHANGES IN THE TESTICULAR TRANSCRIPTOME DURING THE PROSPERMATOGONIAL TRANSITION” (Doctoral Dissertation., East Carolina University, July 2019).
    AMA:
    Serra, Nicholas. THE MECHANISTIC TARGET OF RAPAMYCIN (mTOR) AND ITS COMPLEX 1 ASSOCIATED PROTEIN RPTOR ARE GERM CELL-AUTONOMOUSLY REQUIRED FOR SPERMATOGONIAL DEVELOPMENT & CHAPTER IV: INVESTIGATING CHANGES IN THE TESTICULAR TRANSCRIPTOME DURING THE PROSPERMATOGONIAL TRANSITION [Doctoral Dissertation]. Greenville, NC: East Carolina University; July 2019.
    Collections
    • Anatomy and Cell Biology
    • Dissertations
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback