• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    CUSTOMER REVENUE PREDICTION FROM GEOGRAPHICAL DATA

    Thumbnail
    View/ Open
    KHADEMOREZAIAN-MASTERSTHESIS-2019.pdf (650.7Kb)

    Show full item record
    Author
    Khademorezaian, Kasra
    Access
    This item will be available on: 2021-08-01
    Abstract
    Online stores have created more opportunities for firms to offer different products and services to their customers. These online stores produce a tremendous amount of data that serve different purposes, including revenue prediction. Online stores usually keep a log of customers that visit their website that include session information, the products they showed interest, IP, location, and device information. These features are explored massively for studies such as customer churn and recommender systems but using location information for prediction is not explored as much. The first part of this thesis systematically reviews the articles on revenue prediction with respect to their publication date, application area, evaluation criteria, and technique for prediction that provides a good understanding of already conducted research, the evolution of the topic over the years, and possible research opportunities. The second part focuses on the prediction of Google store revenue data. Using linear regression as a baseline, it evaluates the predictive power of different machine learning techniques, including gradient boosting, support vector regression, and neural networks. The data is collected from Google Analytic demo account that contains 903,653 observation and 55 features. The goal of this study is to predict the total transaction per user from December 1st, 2018 to January 31st, 2019 and in order conduct performance analysis between different prediction techniques.
    URI
    http://hdl.handle.net/10342/7474
    Subject
    Revenue Prediction
    Date
    2019-07-22
    Citation:
    APA:
    Khademorezaian, Kasra. (July 2019). CUSTOMER REVENUE PREDICTION FROM GEOGRAPHICAL DATA (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/7474.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Khademorezaian, Kasra. CUSTOMER REVENUE PREDICTION FROM GEOGRAPHICAL DATA. Master's Thesis. East Carolina University, July 2019. The Scholarship. http://hdl.handle.net/10342/7474. March 01, 2021.
    Chicago:
    Khademorezaian, Kasra, “CUSTOMER REVENUE PREDICTION FROM GEOGRAPHICAL DATA” (Master's Thesis., East Carolina University, July 2019).
    AMA:
    Khademorezaian, Kasra. CUSTOMER REVENUE PREDICTION FROM GEOGRAPHICAL DATA [Master's Thesis]. Greenville, NC: East Carolina University; July 2019.
    Collections
    • Computer Science
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback