• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    •   ScholarShip Home
    • Dissertations and Theses
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    NOVELTY DETECTION FOR PREDICTIVE MAINTENANCE

    Thumbnail
    View/ Open
    Finch Thesis - Final2.pdf (1.098Mb)

    Show full item record
    Author
    Finch, Michael F
    Abstract
    Since the advent of Industry 4. 0 significant research has been conducted to apply machine learning to the vast array of Internet of Things (IoT) data produced by Industrial Machines. One such topic is to Predictive Maintenance. Unlike some other machine learning domains such as NLP and computer vision, Predictive Maintenance is a relatively new area of focus. Most of the published work demonstrates the effectiveness of supervised classification for predictive maintenance. Some of the challenges highlighted in the literature are the cost and difficulty of obtaining labelled samples for training. Novelty detection is a branch of machine learning that after being trained on normal operations detects if new data comes from the same process or is different, eliminating the requirement to label data points. This thesis applies novelty detection to both a public data set and one that was specifically collected to demonstrate a its application to predictive maintenance. The Local Optimization Factor showed better performance than a One-Class SVM on the public data. It was then applied to data from a 3-D printer and was able to detect faults it had not been trained on showing a slight lift from a random classifier.
    URI
    http://hdl.handle.net/10342/8736
    Date
    8/5/2020
    Citation:
    APA:
    Finch, Michael F. (January 0008). NOVELTY DETECTION FOR PREDICTIVE MAINTENANCE (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/8736.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Finch, Michael F. NOVELTY DETECTION FOR PREDICTIVE MAINTENANCE. Master's Thesis. East Carolina University, January 0008. The Scholarship. http://hdl.handle.net/10342/8736. September 21, 2023.
    Chicago:
    Finch, Michael F, “NOVELTY DETECTION FOR PREDICTIVE MAINTENANCE” (Master's Thesis., East Carolina University, January 0008).
    AMA:
    Finch, Michael F. NOVELTY DETECTION FOR PREDICTIVE MAINTENANCE [Master's Thesis]. Greenville, NC: East Carolina University; January 0008.
    Collections
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback