• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   ScholarShip Home
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    The respective roles of BfmRS and PmrA in stress responses and antibiotic resistance in Acinetobacter baumannii

    Thumbnail
    View/ Open
    PALETHORPE-DOCTORALDISSERTATION-2021.pdf (2.874Mb)

    Show full item record
    Author
    Palethorpe, Samantha
    Access
    This item will be available on: 2023-12-01
    Abstract
    The Gram-negative bacterium Acinetobacter baumannii is considered one of the most serious nosocomial pathogens worldwide. Predominantly responsible for ventilator-associated pneumonia, this insidious pathogen typically infects critically ill individuals and patients in long-term care. A. baumannii harbors a myriad of resistance mechanisms to aid its survival in both the environment and the host. Remarkably, A. baumannii does not encode an RpoS sigma factor homolog that is used to control the general stress response by the majority of Gram-negative bacteria. Instead, A. baumannii relies on an intricate regulatory network involving numerous two-component regulatory systems to respond to stress. Two key players that contribute to A. baumannii's "persist and resist" survival mechanisms are the BfmRS and PmrAB two-component regulatory systems. We have demonstrated that the response regulator BfmR can directly activate numerous stress-related pathways. We also provide evidence that the sensor kinase BfmS acts as a phosphatase to negatively regulate BfmR activity. Overall, we show that the BfmRS system harbors the characteristics of a master regulator by controlling the osmotic stress response, the oxidative stress response, the misfolded protein response, csu pili/fimbriae production, capsule polysaccharide biosynthesis, siderophore biosynthesis and transport, type IV pili production, and antibiotic resistance. Additionally, the PmrAB two-component system contributes to antibiotic resistance in A. baumannii. Clinically relevant mutations that arise in the pmrCAB operon often promote resistance to the last resort antibiotic colistin. We biochemically characterized the response regulator PmrA to identify its DNA-binding domain, in addition to the potential PmrA regulon. We also provide the first structural information for the PmrA N-terminal domain. Together, these data allowed us to analyze the structural and dynamic changes in two clinically relevant PmrA point mutants that alter the function of PmrA and promote colistin resistance. Understanding these regulatory mechanisms at a molecular level will allow us to explore novel ways to develop effective antimicrobial agents to combat this serious pathogen.
    URI
    http://hdl.handle.net/10342/9753
    Subject
     BfmRS; colistin resistance; PmrA; response regulator; stress-response; trehalose; two-component system 
    Date
    2021-09-22
    Citation:
    APA:
    Palethorpe, Samantha. (September 2021). The respective roles of BfmRS and PmrA in stress responses and antibiotic resistance in Acinetobacter baumannii (Doctoral Dissertation, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/9753.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Palethorpe, Samantha. The respective roles of BfmRS and PmrA in stress responses and antibiotic resistance in Acinetobacter baumannii. Doctoral Dissertation. East Carolina University, September 2021. The Scholarship. http://hdl.handle.net/10342/9753. January 31, 2023.
    Chicago:
    Palethorpe, Samantha, “The respective roles of BfmRS and PmrA in stress responses and antibiotic resistance in Acinetobacter baumannii” (Doctoral Dissertation., East Carolina University, September 2021).
    AMA:
    Palethorpe, Samantha. The respective roles of BfmRS and PmrA in stress responses and antibiotic resistance in Acinetobacter baumannii [Doctoral Dissertation]. Greenville, NC: East Carolina University; September 2021.
    Collections
    • Dissertations
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback