Repository logo
 

Mathematical Techniques for the Analysis of Partial Differential Equations

dc.access.optionOpen Access
dc.contributor.advisorRatcliff, Gail Dawn Loraine
dc.contributor.authorTran, Kevin K
dc.contributor.departmentMathematics
dc.date.accessioned2018-05-25T17:31:49Z
dc.date.available2018-05-25T17:31:49Z
dc.date.created2018-05
dc.date.issued2018-04-25
dc.date.submittedMay 2018
dc.date.updated2018-05-23T20:59:13Z
dc.degree.departmentMathematics
dc.degree.disciplineMA-Mathematics
dc.degree.grantorEast Carolina University
dc.degree.levelMasters
dc.degree.nameM.A.
dc.description.abstractThis thesis explores various solution methods for partial differential equations. The heat equation, wave equation and Laplace equation are analyzed using techniques from functional analysis, Fourier series, and Fourier transforms. The analysis techniques are studied in depth and applied to the respective partial differential equations to obtain a solution for each problem.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10342/6745
dc.language.isoen
dc.publisherEast Carolina University
dc.subject.lcshDifferential equations, Partial
dc.subject.lcshHeat equation--Numerical solutions
dc.subject.lcshWave equation--Numerical solutions
dc.titleMathematical Techniques for the Analysis of Partial Differential Equations
dc.typeMaster's Thesis
dc.type.materialtext

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TRAN-MASTERSTHESIS-2018.pdf
Size:
347.35 KB
Format:
Adobe Portable Document Format

Collections