First Order Definition of Rings Using Group of Units
dc.contributor.advisor | Shlapentokh, Alexandra | |
dc.contributor.author | Kardos, Michael | |
dc.contributor.department | Mathematics | |
dc.date.accessioned | 2023-06-05T13:54:47Z | |
dc.date.available | 2023-06-05T13:54:47Z | |
dc.date.created | 2023-05 | |
dc.date.issued | 2023-05-03 | |
dc.date.submitted | May 2023 | |
dc.date.updated | 2023-06-02T15:41:00Z | |
dc.degree.department | Mathematics | |
dc.degree.discipline | MA-Mathematics | |
dc.degree.grantor | East Carolina University | |
dc.degree.level | Masters | |
dc.degree.name | M.A. | |
dc.description.abstract | We discuss the technical background and relevant research regarding the undecidability of OQab. Given an algebraic extension K/Q, we consider the subring defined by RK={x [epsilon] OK \[for-all] [epsilon] UK \ {1\}\ [exists][delta]\in UK\[delta]-1\[equivalent] x([epsilon]-1) mod ([epsilon]-1)^²}.We later consider a similar construction over subrings of Q of characteristic 0. In doing this, we hope to gain insight into the result of the construction of RK when K=Qab. | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/10342/12855 | |
dc.language.iso | en | |
dc.publisher | East Carolina University | |
dc.subject | subring | |
dc.subject | extension | |
dc.subject | unit | |
dc.subject.lcsh | Number theory | |
dc.subject.lcsh | Definability theory (Mathematical logic) | |
dc.subject.lcsh | Equations, Abelian | |
dc.title | First Order Definition of Rings Using Group of Units | |
dc.type | Master's Thesis | |
dc.type.material | text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- KARDOS-MASTERSTHESIS-2023.pdf
- Size:
- 305.84 KB
- Format:
- Adobe Portable Document Format