ESTIMATION OF THE PROBABILITY A BROWNIAN BRIDGE CROSSES A CONCAVE BOUNDARY

Loading...
Thumbnail Image

Date

2010

Access

Authors

Yang, Fan

Journal Title

Journal ISSN

Volume Title

Publisher

East Carolina University

Abstract

This thesis studies a new method to estimate the probability that a Brownian bridge crosses a concave boundary. We show that a Brownian bridge crosses a concave boundary if and only if its least concave majorant crosses said concave boundary. As such, we can equivalently simulate the least concave majorant of a Brownian bridge in order to estimate the probability that a Brownian bridge crosses a concave boundary.  We apply these theoretical results to the problem of estimating joint confidence intervals for a true CDF at every point. We compare this method to a traditional method for estimating joint confidence intervals for the true CDF at every point which is based upon the limiting distribution of what is often called the Kolmogorov-Smirnov distance, the sup-norm distance between the empirical and true CDFs. We indicate the disadvantages of the traditional approach and demonstrate how our approach addresses these weaknesses.  

Description

Keywords

Citation

DOI