Repository logo
 

A PRIMER FOR THE FOUNDATIONS OF ALGEBRAIC GEOMETRY

Loading...
Thumbnail Image

URI

Date

2010

Access

Authors

Hampton, Earl F.

Journal Title

Journal ISSN

Volume Title

Publisher

East Carolina University

Abstract

The purpose of this thesis is to define the basic objects of study in algebraic geometry, namely, schemes and quasicoherent sheaves over schemes. We start by discussing algebraic sets as common zeros of polynomials and prove Hilbert's Nullstellensatz to establish a correspondence between algebraic sets and ideals in a polynomial ring. We then discuss just enough category theory to define a sheaf as a contravariant functor and then introduce ringed spaces, the spectrum of a ring, and the definition of affine schemes. We then discuss sheaves of modules over schemes. We then define projective varieties as ringed spaces. We end by proving Hilbert's syzygy theorem that can be used to study the equations defining projective varieties.  

Description

Keywords

Citation

DOI