Repository logo
 

A PRIMER FOR THE FOUNDATIONS OF ALGEBRAIC GEOMETRY

dc.contributor.advisorRavi, M. S.en_US
dc.contributor.authorHampton, Earl F.en_US
dc.contributor.departmentMathematicsen_US
dc.date.accessioned2010-06-24T20:14:38Zen_US
dc.date.accessioned2011-05-17T15:04:40Z
dc.date.available2010-06-24T20:14:38Zen_US
dc.date.available2011-05-17T15:04:40Z
dc.date.issued2010en_US
dc.description.abstractThe purpose of this thesis is to define the basic objects of study in algebraic geometry, namely, schemes and quasicoherent sheaves over schemes. We start by discussing algebraic sets as common zeros of polynomials and prove Hilbert's Nullstellensatz to establish a correspondence between algebraic sets and ideals in a polynomial ring. We then discuss just enough category theory to define a sheaf as a contravariant functor and then introduce ringed spaces, the spectrum of a ring, and the definition of affine schemes. We then discuss sheaves of modules over schemes. We then define projective varieties as ringed spaces. We end by proving Hilbert's syzygy theorem that can be used to study the equations defining projective varieties.  en_US
dc.description.degreeM.A.en_US
dc.format.extent84 p.en_US
dc.format.mediumdissertations, academicen_US
dc.identifier.urihttp://hdl.handle.net/10342/2797en_US
dc.language.isoen_USen_US
dc.publisherEast Carolina Universityen_US
dc.subjectMathematicsen_US
dc.subject.lcshGeometry, Algebraicen_US
dc.subject.lcshSchemes (Algebraic geometry)en_US
dc.subject.lcshCategories (Mathematics)en_US
dc.subject.lcshSheaf theoryen_US
dc.titleA PRIMER FOR THE FOUNDATIONS OF ALGEBRAIC GEOMETRYen_US
dc.typeMaster's Thesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HamptonIII_ecu_0600M_10175.pdf
Size:
467.68 KB
Format:
Adobe Portable Document Format