Repository logo
 

QA4R: A QUESTION ANSWERING SYSTEM FOR R PACKAGES

dc.access.optionOpen Access
dc.contributor.advisorGudivada, Venkat N
dc.contributor.authorBabu, Ganesh
dc.contributor.departmentComputer Science
dc.date.accessioned2022-09-09T15:13:15Z
dc.date.available2023-01-01T09:01:54Z
dc.date.created2022-07
dc.date.issued2022-07-26
dc.date.submittedJuly 2022
dc.date.updated2022-08-30T19:22:39Z
dc.degree.departmentComputer Science
dc.degree.disciplineMS-Computer Science
dc.degree.grantorEast Carolina University
dc.degree.levelMasters
dc.degree.nameM.S.
dc.description.abstractThere is a massive amount of data from various sources available today, and querying meaningful information from those datasets would be valuable. Question Answering Systems (QAS) implement information retrieval (IR) and Natural Language Processing (NLP) that can automatically answer the questions posed in a natural language. There are three different types of QAS as Open Domain, Closed Domain, and Restricted Domain. Following are the various types of questions: fact-based, definition, how, why, hypothetical, semantically constrained, and cross-lingual. R is a dynamic programming language widely used for statistical computing that combines functional and object-oriented programming. The R development community maintains thousands of R packages through its Comprehensive R Archive Network CRAN. However, while websites like rdrr.io, rseek.org, and search.r-project.org provide search results for R packages, no intelligent question-answering system is currently available for R.This study examines Question Answering Systems (QAS), current developments and academic research areas in the QAS field, and QAS implementations. In this research, we propose a prototype question answering system for R packages that returns R packages relevant to the user query in natural language. We created a question answering dataset (QAD4R) for R packages using web scraping and developed a question generation model. Pre-trained BERT-based language models were used to create the question-answering system for R. All the code files are available publicly at this GitHub location https://github.com/GanB/QA4R-A-Question-AnsweringSystem-for-R-Packages.
dc.embargo.lift2023-01-01
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10342/11094
dc.language.isoen
dc.publisherEast Carolina University
dc.subjectQuestion Generation
dc.subjectWord Tokenization
dc.subjectN-Grams
dc.subjectTransformers
dc.subjectBERT
dc.subject.lcshQuestion-answering systems
dc.subject.lcshR (Computer program language)
dc.subject.lcshNatural language processing (Computer science)
dc.titleQA4R: A QUESTION ANSWERING SYSTEM FOR R PACKAGES
dc.typeMaster's Thesis
dc.type.materialtext

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BABU-MASTERSTHESIS-2022.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format

Collections