Fine Particulate air Pollution is Associated with Higher Vulnerability to Atrial Fibrillation—The APACR Study

Thumbnail Image





Liao, Duanping
Shaffer, Michele L.
He, Fan
Rodriguez-Colon, Sol
Wu, Rongling
Whitsel, Eric A.
Bixler, Edward O.
Cascio, Wayne E.

Journal Title

Journal ISSN

Volume Title



The acute effects and the time course of fine particulate pollution (PM2.5) on atrial fibrillation/flutter (AF) predictors, including P-wave duration, PR interval duration, and P-wave complexity, were investigated in a community-dwelling sample of 106 nonsmokers. Individual-level 24-h beat-to-beat electrocardiogram (ECG) data were visually examined. After identifying and removing artifacts and arrhythmic beats, the 30-min averages of the AF predictors were calculated. A personal PM2.5 monitor was used to measure individual-level, real-time PM2.5 exposures during the same 24-h period, and corresponding 30-min average PM2.5 concentration were calculated. Under a linear mixed-effects modeling framework, distributed lag models were used to estimate regression coefficients (βs) associating PM2.5 with AF predictors. Most of the adverse effects on AF predictors occurred within 1.5–2 h after PM2.5 exposure. The multivariable adjusted βs per 10-µg/m3 rise in PM2.5 at lag 1 and lag 2 were significantly associated with P-wave complexity. PM2.5 exposure was also significantly associated with prolonged PR duration at lag 3 and lag 4. Higher PM2.5 was found to be associated with increases in P-wave complexity and PR duration. Maximal effects were observed within 2 h. These findings suggest that PM2.5 adversely affects AF predictors; thus, PM2.5 may be indicative of greater susceptibility to AF.




Journal of Toxicology and Environmental Health. Part a; 74:11 p. 693-705