Repository logo
 

Automatic SQL query generation

dc.access.optionRestricted Campus Access Only
dc.contributor.advisorGudivada, Venkat N
dc.contributor.authorArbabifard, Kamyar
dc.contributor.departmentComputer Science
dc.date.accessioned2017-08-09T16:48:13Z
dc.date.available2018-03-14T18:00:43Z
dc.date.created2017-08
dc.date.issued2017-07-19
dc.date.submittedAugust 2017
dc.date.updated2017-08-07T22:24:16Z
dc.degree.departmentComputer Science
dc.degree.disciplineMS-Computer Science
dc.degree.grantorEast Carolina University
dc.degree.levelMasters
dc.degree.nameM.S.
dc.description.abstractAutomatic generation of questions for learning assessment has been an area of research interest for long. The advent of Massive Open Online Courses (MOOCs) as well as the goal of providing immediate contextualized feedback to enhance student learning has created renewed interest in automatic question generation. This thesis motivates the automatic question generation problem, gives an overview of the current approaches, and describes the proposed novel approach to automatic generation of SQL queries using the notion of grammar graph.
dc.embargo.lift2018-02-01
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10342/6401
dc.language.isoen
dc.publisherEast Carolina University
dc.subjectPersonalized Learning
dc.subjectQuestion Generation
dc.subject.lcshSQL (Computer program language)
dc.subject.lcshMOOCs (Web-based instruction)
dc.subject.lcshEducational evaluation
dc.titleAutomatic SQL query generation
dc.typeMaster's Thesis
dc.type.materialtext

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARBABIFARD-MASTERSTHESIS-2017.pdf
Size:
4.57 MB
Format:
Adobe Portable Document Format

Please login to access this content.

Download