• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   ScholarShip Home
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    Effect of prenatal maternal obesity and exercise on metabolic programming in offspring mesenchymal stem cells

    View/ Open
    CHAVES-DOCTORALDISSERTATION-2021.pdf (5.009Mb)

    Show full item record
    Author
    Chaves, Alec B
    Access
    This item will be available on: 2023-07-01
    Abstract
    Offspring born from mothers with obesity are at a greater risk for obesity, cardiovascular disease, and diabetes, forming a vicious cycle across generations. Although metabolic diseases are often thought to result from lifestyle habits, the classic epidemiological studies of the late David Barker showing low birth weight is associated with mortality from cardiovascular disease in adulthood has added insight into the current dogma underlying the pathogenesis of metabolic diseases. This theory, now coined the Developmental Origins of Health and Disease hypothesis, postulates that an unfavorable intrauterine environment will program an adverse metabolic phenotype, thus increasing the risk of developing diseases postnatally. Therefore, pregnancy is a critical window of fetal development that may shape the future trajectory of offspring metabolic health. However, lifestyle inventions during pregnancy, such as exercise, have been shown to improve offspring’s metabolic health. Thus far, most of these studies have been limited to the use of rodents and non-human primates. To translate these findings to the human condition, our lab has successfully collected mesenchymal stem cells (MSCs) from human offspring from two clinical trials: Healthy Start Study (R01DK076648, ClinicalTrials.gov identifier NCT02273297) and ENHANCED (ClinicalTrials.gov Identifier: NCT03517293) to investigate the relationship between maternal obesity, metabolism, and exercise on offspring mesenchymal stem cells metabolism, respectively. In aim one of this dissertation, we isolated mesenchymal stem cells (MSCs) from the umbilical cord tissue of infants born to mothers of normal weight (NW) or mothers with obesity (Ob). Insulin stimulated glycogen storage was determined in MSCs undergoing myogenesis in vitro. There was no difference in insulin action when stratified by maternal BMI. However, maternal free fatty acid concentration, cord leptin, and intracellular triglyceride content were positively correlated with insulin action. Furthermore, MSCs from offspring born to mothers with elevated FFA displayed elevated activation of the mTOR signaling pathway. Taken together, infants born to mothers with elevated lipid availability have greater insulin action in MSC; this finding may be an indicator of a “growth or storage phenotype” which may increase nutrient storage capacity during periods of maternal overnutrition. In aim two of the dissertation, expecting mothers, were randomized into one of two groups: aerobic exercise (AE) or non-exercise control (CON). The AE group completed 150 min of weekly moderate-intensity exercise during pregnancy (16 to 36+ weeks) while controls attended stretching sessions. Following delivery, MSCs were isolated from the umbilical cord of the offspring and experiments were done in the undifferentiated (D0) or myogenically differentiating (D21) state. Radiolabeled glucose and fatty acid tracers were used to measure glucose and lipid metabolism, respectively. AE-MSCs have increased insulin action, reduced non-oxidized glucose metabolite (NOGM) production, and trending increases in glucose partitioning towards oxidation at D0. At D21, AE-MSCs had trending elevations and reductions in glucose oxidation and NOGM production, respectively, resulting in significant elevations in glucose partitioning towards oxidation. Furthermore, immunoblot analysis revealed a significant increase in complex I expression in the AE-MSCs at D21. Basal and palmitate-stimulated lipid metabolism was similar between groups at D0 and D21. Together, these data provide the first evidence of a programmed metabolic phenotype in human offspring cells specific to the substrate glucose, resulting from maternal aerobic exercise.
    URI
    http://hdl.handle.net/10342/9411
    Subject
     prenatal; fetal 
    Date
    2021-08-13
    Citation:
    APA:
    Chaves, Alec B. (August 2021). Effect of prenatal maternal obesity and exercise on metabolic programming in offspring mesenchymal stem cells (Doctoral Dissertation, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/9411.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Chaves, Alec B. Effect of prenatal maternal obesity and exercise on metabolic programming in offspring mesenchymal stem cells. Doctoral Dissertation. East Carolina University, August 2021. The Scholarship. http://hdl.handle.net/10342/9411. August 12, 2022.
    Chicago:
    Chaves, Alec B, “Effect of prenatal maternal obesity and exercise on metabolic programming in offspring mesenchymal stem cells” (Doctoral Dissertation., East Carolina University, August 2021).
    AMA:
    Chaves, Alec B. Effect of prenatal maternal obesity and exercise on metabolic programming in offspring mesenchymal stem cells [Doctoral Dissertation]. Greenville, NC: East Carolina University; August 2021.
    Collections
    • Dissertations
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback